LCA for regeneration of waste oil to base oil Updating the study **Ecological and energetic assessment of re-refining waste oils to base oils -** Substitution of primarily produced base oils including semi-synthetic and synthetic compounds Nabil Abdalla, Horst Fehrenbach Heidelberg, 14 April 2018 On behalf of GEIR - Groupement Européen de l'Industrie de la Régénération Rue de Luxembourg, 22-24, B-1000 Brussels, Belgium **IMPRESSUM** Authors: Nabil Abdalla, Horst Fehrenbach Editor: ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH Wilckensstr. 3, D-69120 Heidelberg, Germany Critical Review: Prof. Dr. Birgit Grahl, INTEGRAHL, Heidekamp, Germany Chris Foster, EuGeos Limited, Macclesfield, UK Sébastien Soleille, Deloitte, Paris, France Year of publication: 2018 56 pages | 1 | Bacl | kground | d and motivation | 1 | |---|--|----------|---|----| | 2 | Defi | nition o | of goal and scope | 2 | | | 2.1 | Goal | of the study | 2 | | | | 2.2.1 | Definition of the reference system | 3 | | | | 2.2.2 | How to deal with diverse technical qualities of the final base oil products | 4 | | | | 2.2.3 | Factors influencing the actual of the base oil product produced by regeneration | 5 | | | | 2.2.4 | Further basic settings | 6 | | 3 | Met | hodolo | gy and approach | 9 | | | 3.1 | Frame | work and working steps | 9 | | | 3.2 | Mode | lling of LC Inventories | 10 | | | 3.3 | LC Imp | pact assessment | 10 | | | 3.4 | LC Inte | erpretation | 12 | | | 3.5 | Collec | tion of data | 13 | | | | 3.5.1 | Regeneration processes | 13 | | | | 3.5.2 | Upstream and downstream processes | 13 | | | | 3.5.3 | Reference system | 14 | | | | 3.5.4 | Discussion of data quality | 14 | | 4 | Cha | racteriz | ation of waste oil | 16 | | 5 | Des | cription | of the considered regeneration techniques | 18 | | | 5.1 | | | 18 | | | 5.2 | | | 18 | | | 5.3 | | | 19 | | | 5.4 | | | 19 | | 6 | Description of the substituted and other inflicted processes | | | 20 | | | 6.1 | Miner | al oil refinery | 20 | | | 6.2 | Treatr | nent to fuel oil (reference system) | 22 | | | | 6.2.1 | Three-stage treatment process | 22 | | | | 6.2.2 | Substituted fuel oil | 22 | | 7 | Resi | ults and | Interpretation | 23 | | | 7.1 | Compa | arison of the four regeneration options | 23 | | | 7.2 | Compa | rison of regeneration to base oil with processing to fuel oil | 31 | |----|--------|---------|--|----| | | | 7.2.1 | Impact assessment results | 31 | | | | 7.2.2 | Normalization of impact assessment results and grouping | 33 | | | 7.3 | Sensiti | vity analysis | 36 | | | | 7.3.1 | Fuel substitution | 36 | | | | 7.3.2 | Does the average of four regeneration techniques properly represent the single techniques? | 37 | | | | 7.3.3 | Temporal bias concerning the reference system? | 38 | | | | 7.3.4 | How does the base oil quality affect the results? | 39 | | | | 7.3.5 | Summary | 40 | | 8 | Con | clusion | | 41 | | 9 | Lite | rature | | 43 | | Ar | nnex l | Proces | s information spread sheet | 45 | **Critical Review Statement** # List of figures | Figure 1: Waste oil utilization in Europe in 2014; total amount 1,739,500 tons; source: GEIR (2016) | 4 | |--|-----------| | Figure 2: Correlation model based on viscosity index (VI) by actual recycled ba
oil as a numerical indication for the definition of replaced virg
base oil hypothetically blended from group I and group IV bas
oil. | gin | | Figure 3: Simplified scheme of the system boundary for regeneration and its substituted equivalent system | 7 | | Figure 4: Simplified scheme of the system boundary for the reference system and its substituted equivalent system | 8 | | Figure 5: Phases of a life cycle assessment (LCA), according to ISO 14040:2006 | 9 | | Figure 6: Network model for the calculation of mass and energy flow of a virtumineral oil refinery | ıal
21 | | Figure 7: Impact assessment results for resource depletion; showing the avera result (arithmetic mean) of the four techniques as well as the individual minimum and maximum. | | | Figure 8: Impact assessment results for global warming; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum | e
26 | | Figure 9: Impact assessment results for acidification; showing the average results (arithmetic mean) of the four techniques as well as the individual minimum and maximum | ult
27 | | Figure 10: Impact assessment results for eutrophication; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum | | | Figure 11: Impact assessment results for human toxicity represented by carcinogenic risk potential; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum | 28 | | Figure 12: Impact assessment results for human toxicity represented by fine particulates (PM2.5 showing the average result (arithmetic mean) of the four techniques as well as the individual minimuland maximum. | | | Figure 13: Total view on the impact assessment results; all figures related to the particular result of "regeneration", main bars: average result (arithmetic mean) of the four techniques, deviation bars: range of the four techniques | | | Figure 14: Illusti | rative example for the final combination of the impact assessment result to analyze the difference between regeneration and treatment to fuel oil. | 32 | |--------------------|--|----| | Figure 15: Syno | osis on the comparable impact assessment results – regeneration (average) vs. treatment to fuel; values <1 describe better performance than regeneration and substitution of standard base oil and vice versa. | 33 | | Figure 16: Over | view of impact-related and normalized differences between average regeneration and treatment to fuel oil | 35 | | Figure 17: Total | view on the comparable impact assessment results – regeneration (average) vs. treatment to fuel – sensitivity of the choice of fuel oil type -; values <1 describe better performance than regeneration (base oil group I) and vice versa. | 37 | | Figure 18: Comp | parison of regeneration (average) and treatment processes (no
substituted equivalency system considered) scaled on
regeneration for each impact category. | 38 | | Figure 18: Acidi | fication for regeneration, treatment and its equivalency systems and final combination of these components for the comparison of both opions. | 39 | | Figure 19: GWP | for regeneration, treatment and its equivalency systems and final combination of these components for the comparison of both opions. | 40 | | Figure 20 Quest | ionnaire for the narticinating companies | 45 | ## List of tables | Table 1: Overview of the changes with respect to Fehrenbach (2005) | 2 | |---|----| | Table 2: Used impact categories and indicators, classified data categories and characterization factors | 11 | | Table 3: Total per-capita emission and consumption in the Federal Republic of Germany and valuation suggested by UBA regarding ecological hazard potential and distance to goal of protection | 12 | | Table 4: Upstream and downstream data modules applied within the ife cycle inventory of this LCA | 13 | | Table 5: Matrix for the characterization of data quality according to Weidema, Wesnæs (1996) | 14 | | Table 6: Comparison between a typical waste oil composition in 1997 and 2017. Data provided by a participating company. | 17 | | Table 7: Input (energy and auxiliary consumption) and output (yield and wastes) for treatment of waste oil to low sulphur fuel oil. | 22 | | Table 8: Results of impact assessment for the 4 technical options according to burdens by regeneration system and equivalency system | 24 | | Table 9: Line-up of impact results for regeneration (average of four) and treatment to fuel oil; all results based of 1 Mg of recovered | | | waste oil | 31 | | Table 10: Overview of impact-related and normalized differences between regeneration to base oil and processing to fuel oil; in PEV 2015. | 34 | # Glossary ## Glossary on terminology This study follows the terminology determined by the Waste Directive (2008/98/EC), using the expressions: - "Waste oil", covering "used oil": any mineral or synthetic lubrication or industrial oils which have become unfit for the use for which they were originally intended, such as waste combustion engine oils and gearbox oils, lubricating oils, oils for turbines and hydraulic oils. - "Regeneration", covering "re-refining": any recycling operation whereby base oils can be produced by refining waste oils, in particular by removing the contaminants, the oxidation products and the additives contained in such oils. The title of the cycle remain unchanged because it includes a citation. #### **Abbreviations** | Arbeitsgemeinschaft Energiebilanzen e.V. (Working Group on Energy Balances) | | |---|--| | Acidification potential | | | American Petroleum Institute | | | Best available technology reference document | | | Cumulative energy demand | | | Methane | | | Carbon dioxide |
| | Carbon dioxide equivalents | | | Carcinogenic risk potential | | | European Union | | | Groupement Européen de l'Industrie de la Régénération | | | Global Warming Potential | | | Heavy fuel oil | | | International Organization for Standardization | | | Life Cycle Assessment | | | Life Cycle Impact Analysis | | | | | # Glossary | LCI | Life Cycle Inventory | |------------------|--| | Mg | Megagram (= metric tonne) | | MJ | Megajoule | | MARPOL | International Convention for the Prevention of Marine Pollution from Ships | | N ₂ O | Nitrous oxide, laughing gas | | NH ₃ | Ammonia | | NO | Nitrogen monoxide | | NO ₂ | Nitrogen dioxide | | NO _x | Nitrogen oxides | | PAH | Polycyclic Aromatic Hydrocarbons | | PAO | Poly-alpha-Olefines | | РСВ | Polychlorinated Biphenyls | | PCDD/F | Polychlorinated Dibenzodioxins /furanes | | PEV | Person Equivalency Value | | PM2.5 | Particulate matter with an aerodynamic diameter of less than 2.5 μm | | PM10 | Particulate matter with an aerodynamic diameter of less than 10 μm | | UBA | Umweltbundesamt, German Federal Environment Agency | | UOP | Universal Oil Products (Company name) | | VI | Viscosity index | # 1 Background and motivation The European Waste Framework Directive (2008/98/EC) gives explicit instructions for the management of waste oils. Above all, it should be conducted in accordance with the priority order of the waste hierarchy. Moreover, preference should be given to options that deliver the best overall environmental outcome. Both principles require the separate collection of waste oils which remains crucial to their proper management and the prevention of damage to the environment from their improper disposal. **Legal basics** The identification of the option delivering the best overall environmental outcome has been scrutinized by means of a large number of life cycle assessments (LCA) since the late nineties of the last century and the beginning of the current one. One of these LCA studies was performed by ifeu on behalf of the GEIR (Fehrenbach 2005). Policymakers still refer to that study published over a decade ago. Even the recently published LCA studies on regeneration in the USA refer to the ifeu study from 2005 to describe the situation in Europe, although the situation has clearly changed (Geier et al. 2013, Grice et al. 2013). Need for an update Considering the current state of technology, the original set of data has to be regarded as outdated taking the actual state of technical practice into account. In 2005, some of the regeneration plants under assessment had been still in a pilot or testing phase of recently implemented new technologies. In addition, a significant change in the overall use of waste oil has taken place within the last decade. In 2005 waste oil has been most commonly energetically recovered as a substitute for coal in cement works. Today prevalence of this way of utilization has strongly decreased, whereas treatment to fuel oil in particular has emerged as the main competitor to re-refining. In order to respond to these key developments, there is need for a current assessment. Objective of this study It is the objective of this study to provide an update of the outdated reference 2005 considering the most recent process data as well as the change in terms of competition (reference). This study addresses European Policymakers and stakeholders. It shall provide a basis for an international discussion and a robust base of knowledge to assist decision making. The herewith updated reference study (Fehrenbach 2005) can be downloaded from here: https://www.ifeu.de/wp-content/uploads/GEIR-final-report-LCA-21-04-05.pdf # 2 Definition of goal and scope In a very first step the authors have examined, whether and in what way, goal and scope defined by the study from 2005 would need to be revised. This has been discussed with GEIR at the beginning of the project. Apart from slight adaptations the core of the previous goal definition has been maintained. However, there have been a number of significant developments within the last decade. Table 1 shows the main aspects of this development. | Aspect | Fehrenbach (2005) | this study (2017) | |---------------------------------------|---|--| | Participating Companies / | | | | number of techniques under study | 5 | 4 | | Inventory | | | | - regeneration process | partly measured data from operation,
partly projected | - only measured data from operation in 2016 ¹ (annual mean) | | - upstream data (currentness) | - time frame late 2000 | - time frame after 2010 | | Characterization factors | | | | - GWP 100 | - 2 nd Assessment Report (IPCC 1996) | - 5 th Assessment Report (IPCC 2013) | | - Particulate matter | - PM10 | - PM2.5 | | Reference quantity for normalization: | | | | Waste oil to re-refining in the EU | 600.000 Mg | 935.000 Mg | | Reference system | Cement works | Treatment to fuel oil | | · | (energetic recovery | | | | and coal substitution) | | Table 1: Overview of the changes with respect to Fehrenbach (2005) ## 2.1 Goal of the study The goal of this study is to provide an updated and forward-looking view on the ecological and energetic aspects of regeneration of waste oil. The conclusions of the study by Fehrenbach (2005) representing more or less the situation of the last decade represent a starting position, as some major aspects have changed but methodical aspects remained constant for the most part. Similar to Fehrenbach (2005), information regarding the regeneration processes has been derived from common practice and process conditions of Goal definition maintained ¹ Process data was gathered in 2017 and refer to the annual mean in 2016. four leading companies operating in Europe. They comprise two thirds of European regeneration capacity in 2014. Key tasks of the study are: - Outline the current situation in the field of waste oil management in Europe and the key developments within the last ten years. - Modelling and comparing the four selected and advanced techniques of regeneration taking their environmental impact and benefits due to the substitution of primary products into account. - Comparing the average result of the four advanced regeneration techniques considered with the reference case: the most significant alternative treatment of waste oil in Europe. - Disclosing and discussing the most decisive parameters in a transparent way. The study addresses policymakers and stakeholders in the field of waste management for waste oil. ## 2.2 Definition of scope Considering the scope of the study, the following two items require particular attention: - · Revision of the definition of the reference system; - How to deal with diverse technical qualities of the final base oil products. #### 2.2.1 Definition of the reference system The study of 2005 considered alternatively waste oil combustion in a cement kiln as a substitution of standard fossil fuels. An analysis of the current situation of waste oil management in Europe shows that this type of recovery has lost its relevance. Today, only about 3% of the total collected waste oil is used in the cement industry. According to ascertainments by GEIR (2016), utilization of waste oil in Europe is dominated by regeneration to base oil: 42 % directly within the countries of collection and an additional 13 % after exporting for regeneration to some other European countries. In other words: more than half of the collected waste oil is subject to regeneration. The second most important pathway is treatment to fuel, which accounts for 31 % of the total collected waste oil. In other words: three quarters of the waste oil not regenerated to base oil are treated to produce fuel oil. Other treatment options, e.g. combustion in cement works in total account for about 15% (see Figure 1) and are thus negligible within this study. Waste oil management has changed in Europe Hence, there is need to adapt the reference system to account for the major changes of waste oil management in Europe over the last decade. The decided reference system for this study is therefore: treatment to fuel as it is the only significant alternative to rerefining (further details see chapter 6). Reference system updated ¹ Fehrenbach (2005) investigated five companies. Evergreen, a company from the US, is not represented in this study. Figure 1: Waste oil utilization in Europe in 2014; total amount 1,739,500 tons; source: GEIR (2016) #### 2.2.2 How to deal with diverse technical qualities of the final base oil products The technical quality of the final base oil products has already been an important point of attention in former studies. The study from 2005 applied two levels of quality to compare regenerated base oil with virgin base oil of the same quality, assuming the two levels describe the range from a minimum to a presumed achievable optimum: Approach by study 2005 - Minimum: corresponding to group I base oil - Presumed achievable optimum: corresponding to a mix of 70 % group I base oil and 30 % group IV base oil. Today, the qualities of regenerated base oils are still ranging from group I quality to qualities approximating group III. It would be straightforward to mirror each regenerated base oil quality directly by the LCA data for the equivalent virgin base oil group. Unfortunately, the available data bases do not cover these groups by consistent LCA data. In particular, the most relevant groups II and III are not satisfactorily covered, while for group I and group IV (PAO) solid LCA data are still available. In order to bridge this gap, the authors have developed a correlation model based on the viscosity index (VI) as a proxy
indicator to define the equivalent virgin base oil by interpolation of groups I (standard base) and IV (PAO). As shown in Figure 2, the approach provides explicit data for any quality of base oil. The approach will be checked by a sensitivity analysis, since we cannot exclude the possibility of overestimating the environmental burden of virgin base oil production representing actually group II and III medium group qualities (see section 0). For comparison of regenerated base oil with virgin base oil, we still refer to the two-level approach: Correlation model based on viscosity index - 1. Standard quality (representing group I base oils with a viscosity index of 100), - 2. Advanced quality (representing base oil quality group in between group II and group III with a viscosity index around 115, corresponding to a hypothetical blend of 70 % group I and 30 % group IV, as marked in Figure 2). Figure 2: Correlation model based on viscosity index (VI) by actual recycled base oil as a numerical indication for the definition of replaced virgin base oil hypothetically blended from group IV base oil. #### 2.2.3 Factors influencing the actual of the base oil product produced by regeneration The final quality of recycled base oil produced by an advanced regeneration techniques is determined by a number of factors: - The quality of the collected waste oil (see also section 4); increasing quality of applied lubricants lead to waste oils containing these high quality components. Regeneration offers the possibility to preserve these components and incorporate them in the recycled base oil. However this factor is not under the control of the regeneration company, it is bound to the collecting area. - The applied level of technology (see also section 5); actually all techniques under study are qualified to produce high qualities. Three of them are based on hydrogenation technology, typically favoring an upgrade of the waste oil feedstock; one technique applies solvent extraction, typically preserving high quality components. - 3. The base oil market the company is serving; even if a high quality would be feasible due to feedstock (a.) and technical conditions (b.) a company might be prefer to serve the established market regardless of technical potentials. The four techniques under assessment have to cope with these three major factors. It is outside the scope of this study to analyze the individual situation of each of these companies. However it can be stated that each of the techniques carry the potential to meet the criteria to produce the "advanced quality" of base oil as defined in section 2.2.2. Anyway we consider the application of the "standard quality" adequate to hedge the theoretical worst case (see also section 0). #### 2.2.4 Further basic settings The reference unit is the entire quantity of regenerated waste oil within the European Union. According to GEIR (2016), this is about **950,000 Mg per year** - apparently higher than the quantity of 600,000 Mg per year applied by the study in 2005. Reference volume and functional unit The functional unit for the calculation of inventory and impacts will be focused again on the treatment of 1 Mg of collected and regenerated waste oil. For the purpose of normalization the results will be scaled up on the reference quantity of 950,000 Mg. Apart from the items discussed above, the system boundary still corresponds to the settings of the study in 2005, such as: System boundary - Including transport from the waste producer to the regeneration plant.¹ - Including all external processes due to regeneration (e.g. fuel production or electrical power supply, crude oil drilling and production, digging and mining). Also, downstream processes like waste disposal are included. - The analysis of a regeneration option ends when a specified product enters the economic cycle. The quality specification has to be recognized because the production of an equivalent product has to be analysed under consideration of all elements in its primary production chain (defined as equivalencey system) - By-products of the regeneration process e.g. surplus of process energy are considered. The benefit of these side-effects is also considered within the system of substituted primary products. - The geographical boundary is sticking to Europe in terms of provenience of waste oil and technical standard. Imported materials – such as crude oil or coal from overseas – are likewise considered as far as they are consumed within the systems. - In terms of the time scale, the study assesses techniques that are applied since a decade. The data concerning production and delivery of energy and raw materials are as up to date as available. - Cut-off criteria are set to keep the system boundary in a well determined range. The general rule applied in this study is: The production of input materials that don't exceed 1 % of mass of the reference flow (e.g. waste oil in the regeneration plant) is not ¹ Waste disposal in nearly all cases requires a form of transport. In order to correspond to Fehrenbach (2005), the same average distance of 100 km was applied. For an analysis of the sensitivity of transport aspects, we quote from Fehrenbach (2005) page 60: "... with regard on the influence on the net results it is obvious that varying dis-tances is not a highly sensitive parameter. Nutrification is the only impact category taking more than 10 %. Doubling the distance from source to re-refining plant from 100 km to 200 km would decrease the environmental benefit concerning nutrification by 11 %. considered. The sum of neglected materials within one process shall not exceed 5 % of the reference flow. - Neither emissions due to construction of the plants nor due to other infrastructure are considered. - Umberto (version 5.5) has been chosen as LCA modelling software¹The definition of the system boundary as described in Figure 3 and Figure 4 is still valid. $Figure \ 3: Simplified \ scheme \ of \ the \ system \ boundary \ for \ \textbf{regeneration} \ and \ its \ substituted \ equivalent \ system$ ¹ The former study, too, used Umberto as LCA software, albeit an older by now outdated version Figure 4: Simplified scheme of the system boundary for the **reference system** and its substituted equivalent system # 3 Methodology and approach ## 3.1 Framework and working steps The methodical principles and approaches applied by the study from 2005 are widely adopted by this study in order to facilitate comparability of the outcome. Nevertheless, some developments in LCA procedure are likewise followed. The basic rules given by ISO 14040:2006 and ISO 14044:2006 still apply. Figure 5: Phases of a life cycle assessment (LCA), according to ISO 14040:2006 After the definition of the goal, the working steps are: **Working steps** - 4. Collection of currently valid process data of the techniques under assessment - 5. Modelling of the selected techniques based on - a. most recent process data - b. most recent background data (e.g. for electricity imported from general grid, fuels, transport, auxiliary material etc.) - 6. Modelling a reference system describing alternative energetic use of waste oil - 7. Calculating inventories and impact assessment - 8. Discussion and interpretation of the results and comparison with the results obtained from the study 2005 000 00 ## 3.2 Modelling of LC Inventories LCAs of waste management activities have commonly shown that the main impacts of recycling or recovery rest on the relief of environmental stress by substituting primary production processes. This is not surprising since the primary logic of recovery is always conservation of resources. Fehrenbach (2005) has confirmed this finding. Since 2005, the quality of applied lubricants has developed in line with the trend to higher shares of semi-synthetic and synthetic compounds. These compounds can be found in waste oil likewise, and will – with respect to the applied technology of the regeneration – be transferred into the regenerated base oil. ## 3.3 LC Impact assessment A review of the applied impact categories has led the authors to maintain the set of categories with a few adjustments, such as: - The indicator for resource depletion: The indicator "raw oil equivalents" applied in 2005 is rather uncommon and therefore has been replaced by the cumulative energy demand (CED), focusing on fossil primary energy sources. - Particulate matter as an human toxicity indicator has been adjusted from PM10 to PM2.5, in order to address the more relevant indicator from a toxicological point of view. - Updating the GWP100 characterization factors from IPCC (1996) to IPCC (2013). Furthermore, in order to ensure a maximum in continuity to the previous study, the authors decided to investigate the same impact categories as Fehrenbach (2005). The original selection has been based on the most relevant areas, which are most likely to be affected by (petro-) chemical processes such as those that are subject to this study. Furthermore, the previous study has excluded impact categories of relevance but with significant shortcomings in terms of consistency and completeness. Table 2 provides an overview of the applied impact categories including the covered data categories and characterization factors. ¹ Relevant but unconsidered impact categories are: Summer smog, with wide ranges of volatile organic compounds, typically emitted by refineries Aquatic toxicity, referring to water-borne emissions from refineries . Due to incompleteness and inconsistencies, the authors decided not to investigate these impact categories. | Impact category | Data category | Characterization factors | Unit | Source | |---|------------------------------|--------------------------|--|-----------------| | Resource depletion: | Mineral oil | 42.62 ^{a)} | MJ / kg | UBA (1995) | | cumulative energy | natural gas | 37.78 a)
 MJ/m^3 | | | demand, fossil (CED _{fossil}) | coal | 29.81 ^{a)} | MJ / kg | | | | lignite | 8.30 ^{a)} | MJ / kg | | | Global warming: | CO _{2 (fossil)} | 1 | kg CO ₂ -Eq. / kg | IPCC 2013 | | (GWP100) | CH _{4 (fossil)} | 30 | kg CO ₂ -Eq. / kg | | | | N_2O | 265 | kg CO ₂ -Eq. / kg | | | Acidification: | SO ₂ | 1 | kg SO₂-Eq. / kg | CML 2013 | | | NO_X | 0.7 | kg SO₂-Eq. / kg | | | | NH_3 | 1.88 | kg SO₂-Eq. / kg | | | | HCI | 0.88 | kg SO₂-Eq. / kg | | | | HF | 1.6 | kg SO₂-Eq. / kg | | | | H ₂ S | 1.88 | kg SO ₂ -Eq. / kg | | | Nutrification, | NO _x | 0.13 | kg PO ₄ ³⁺ -Eq. / kg | Heijungs et al. | | terrestrial: | NH_3 | 0.346 | kg PO ₄ ³⁺ -Eq. / kg | (1992) | | Human toxicity: | | | | IRIS (2006) | | Carcinogenic risk | As | 1 | kg As-Eq. / kg | | | Potential: | Cd | 0.42 | kg As-Eq. / kg | | | | Cr (10 % Cr-VI presumed) | 0.279 | kg As-Eq. / kg | | | | Ni | 0.056 | kg As-Eq. / kg | | | | Dioxine | 3020 | kg As-Eq. / kg | | | | Benzo(a)pyren | 20.9 | kg As-Eq. / kg | | | | PCB | 0.279 | kg As-Eq. / kg | | | fine particulates | Primary particulates (PM2.5) | 1 | kg PM2.5-Eq. / kg | De Leeuw (2002) | | (PM2.5): | Primary particulates (PM10) | 0.5 | kg PM2.5-Eq. / kg | | | | SO_2 | 0.54 | kg PM2.5-Eq. / kg | | | | NO_X | 0.88 | kg PM2.5-Eq. / kg | | | | NH ₃ | 0.64 | kg PM2.5-Eq. / kg | | | | Hydrocarbons | 0.012 | kg PM2.5-Eq. / kg | | a) Lower heating values (LHV), not characterization factors in the actual sense, because yet defined as inventory category; in fact LHVs can vary within the same energy carrier Table 2: Used impact categories and indicators, classified data categories and characterization factors ## 3.4 LC Interpretation The approach applied for the identification of the significant issues is based on two procedures described in ISO 14044:2006 as optional elements of the impact assessment. - Normalization: Calculation of the magnitude of the category indicator results relative to reference values (specific contribution). In this case, the total inventory of resource consumption and emissions in Germany was used as a reference.¹ - Grouping: Ranking the impact categories in a given order of hierarchy, such as very high, high, medium and low priority. The *specific contribution*, which is the calculated result of the balance process (normalization of impact assessment), is given here as an absolute value expressed in **Person Equivalency Values (PEV)**. The Person Equivalency Value represents the average per-capita load of one inhabitant (e.g. 12 Mg CO₂-eq. per year). If the load caused by one recycling option or, respectively, the difference between two options is divided by this value, the result will be the number of inhabitants that corresponds to a particular option or the difference between two options respectively. The interpretation step entails another procedure with a qualitative character to assess impact categories. The categories are defined independently from the LCA in general and, according to the UBA method, are divided each into five classes. Depending on their priority, the impact categories are assigned to these five classes (ranking of impact categories: Classes A "very high", B "high", C "medium", D "low", and E "very low" priority). Due to its global and immense impact combined with its supposed irreversibility, global warming, for example, is assigned a "very high ecological hazard potential". Until now, only slow progress has been made in reducing emissions on a global basis. Political goals are consequently unlikely to be met. | | Per-capita load | | Ecological Priority (b) | |--------------------------------------|--|-----------|-------------------------| | | German inhabitant PEV | Reference | | | Fossil energy resources (CED fossil) | 134.296 MJ/a | (a) | "medium" | | Global warming | 11,776 kg CO ₂ -Eq./a | (a) | ■ "very high" | | Eutrophication, terrestrial | 5.03 kg PO ₄ ³⁻ -Eq./a | (a) | ■ "high" | | Acidification | 31.5 kg SO_2 -Eq./a | (a) | ■ "high" | | Carcinogenic pollutants | 8.63 g As Eq./a | (a) | ■ "very high" | | Fine particulates (PM2.5) | 23,95 kg PM _{2.5} Eq./a | (a) | ■ "high" | References: a) aggregated data own calculation on the basis of data provided by UBA National trend tables for German reporting of airborne emissions, Statistisches Bundesamt (German Federal Statistical Office) and AGEB 2015 b) Ecological Priority based on the state of the art in application since UBA (1999) Eq. = equivalents Table 3: Total per-capita emission and consumption in the Federal Republic of Germany and valuation suggested by UBA regarding ecological hazard potential and distance to goal of protection ¹ The German data have been selected because the European data situation is incomplete. Note: the PEV shall give just an orientation in terms of the order of magnitude of LCIA results. ### 3.5 Collection of data #### 3.5.1 Regeneration processes The data of the different regeneration processes were provided directly by the participating companies (see chapter 5). In order to gather all necessary information, the authors prepared an Excel-based questionnaire (see Annex I) concerning all relevant information for modelling the regeneration processes. These questionnaires have been thoroughly filled out by the companies throughout 2017, constituting the core data source of this study. The collected gate-to-gate data represent the twelve-month average of the year 2016 for each of the four regeneration processes under study. Each company has confirmed the suitability of these data for representing typical production conditions. The authors haven't visited the operating plants for verifying the data provided. However all these data have been scrutinized in terms of technical plausibility and changes compared to the LCA from 2005. We are well-informed that one of the companies and regeneration sites under study has been going through an intensive verification process of all the data by the renowned certification company NSF International in 2015. That process has proofed the correctness of the data in detail. #### 3.5.2 Upstream and downstream processes Data regarding auxiliary processes, e.g. provision of electricity, use of catalysts, transports, water supply, sewage treatment etc. were taken from the Umberto database. This data is regularly updated to account for ongoing developments. In terms of the substituted primary processes, the ifeu refinery model provides the basis. This model is also interconnected to other (auxiliary) processes and databases (see Table 4). | Chemicals | Data from | Settings/Assumptions | |--------------------------------------|------------------------|----------------------| | sodium hydroxide | Plastics Europe | | | potassium hydroxide | Ecoinvent 2.2 | | | sodium carbonate | Ecoinvent 2.2 | | | propane | Plastics Europe | | | hydrogen | supplier-specific data | steam reforming | | nitrogen | Ecoinvent 2.2 | | | sulphuric acid | Ecoinvent 2.2 | | | Fuller's Earth | Ecoinvent 2.2 | | | compressed air | Ecoinvent 2.2 | | | catalyst | Ecoinvent 2.2 | | | Energy | | | | electricity | ifeu grid model | EU average | | natural gas | Ecoinvent 2.2 | EU average mix | | Transport | TREMOD | truck, 200 km | | Sewage treatment | ifeu data base | European standards | | mineral oil products | ifeu refinery model | European standard | | base oil, naphtha, fuel oil, bitumen | | | Table 4: Upstream and downstream data modules applied within the ife cycle inventory of this LCA #### 3.5.3 Reference system Data referring to the reference system was derived from Kolshorn and Fehrenbach (2000). As mentioned above, the reference system was modelled anew. #### 3.5.4 Discussion of data quality Table 5 gives a semi-quantitative pedigree matrix for the characterization of data quality (Weidema, Wesnæs 1996), taken as a guides for grading the quality of the applied data. According to that, it can be stated that: - The data for the regeneration processes correspond to the highest score in terms of all indicators: measured, complete and most recent. - The quality of the majority of data sets regarding upstream and downstream processes (see Table 4) offers rather high reliability and completeness (score 2). Most data sets are taken from recognized data bases, such as ecoinvent. - The data quality of the mineral oil refinery is based on long-term expertise in modelling particuliarly these processes.¹ | Indicator score | 1 | 2 | 3 | 4 | 5 | |------------------------------|---|---|---|--|--| | Reliability | Verified data based on
measurements | Verified data partly
based on assumptions
or non-verified data
based on measurements | Non-verified data partly based on assumption | Qualified estimate (e.g. by industrial expert) | Non-qualified estimate | | Completeness | Representative data from a sufficient sample of sites over an adequate period to even out normal fluctuations | of sites but for adequate | Representative data
from adequate number
of sites but from shorter
periods | Representative data but
from a smaller number
of sites and shorter
periods or incomplete
data from an adequate
number of sites and
periods | Representative
unknown or incomplete
data from a smaller
number of sites and/or
from shorter periods | | Temporal correlation | Less than 3 years
difference to year of
study | Less than 6
years
difference to year of
study | Less than 10 years
difference to year of
study | Less than 15 years
difference to year of
study | Age of data unknown or
more than 15 years | | Geographical
correlation | Data from area under
study | Average data from area in which the area under study is included | Data from area with similar production conditions | Data from area with
slightly similar
production conditions | Data from unknown
area or area with very
different production
conditions | | Technological
correlation | Data from enterprises,
processes, and materials
under study | Data for processes and
materials under study
but from different
enterprises | Data for processes and
materials under study
but from different
technology | Data on related
processes or materials
but same technology | Data on related
processes or materials
but different technology | Table 5: Matrix for the characterization of data quality according to Weidema, Wesnæs (1996) Data quality of the reference system *treatment to fuel oil* meet the requirements for an indicator score 1 in terms of reliability, completeness, geographical correlation as well as technological correlation. Though it has to be stated that in terms of temporal correlation, ¹ The ifeu refinery model is on the way to constitute the origin of an update of mineral oil products for the ecoinvent database. an indicator score of 5 has to be attibuted due to the fact that initial data collection has been carried out more than 15 years ago. However, a technical evaluation of the reference system in 2017 in consultation with a company operating in this field concluded that the process data applied in Kolshorn and Fehrenbach (2005) still represent the current state of the art for treatment to fuel oil. As a whole, data quality of the reference system is thus slightly worse, compared to the regeneration processes. On the other hand the reference is significantly less complex than the regeneration processes, and consumption levels are much lower. We assume the risk of false estimation to be very low. ## 4 Characterization of waste oil The waste oil qualities for regeneration are based on separately collected used engine and other industrial waste oils suitable for regeneration to base oil. Qualities which don't meet the specification for regeneration (e.g. oils contaminated with very high Chlorine or PCB, or so-called MARPOL oils) are not within the scope of this assessment. The quality and composition of the waste oil were provided by the participating companies. On the basis of this data, an average waste oil composition was calculated and presumed to be the reflection of the typical European waste oil. When compared to a typical waste oil in 2005, a clear trend towards advanced synthetic base oils with a corresponding higher PAO content can be observed (base oil type IV) (Phadke, M., Singh, A.K. 2017). This development is reflected by globally growing PAO production capacities, which grew some 20% in the time frame from 2012 to 2016 (Lubes'n'Greases 2017). Stricter emission standards for cars and thus higher requirements for lubricants as well as a rise of special applications such as wind turbines lead to higher demands in synthetic components (Chevron Philipps 2015). Table 6 shows a comparison between a typical waste oil composition in 1997 and 2017, respectively. A clear trend toward lower amount of trace elements, ash content, sulphur content and lower, on average, viscosity at 40 °C as well as a significantly lower range in viscosity can be observed. These results underline the development of base oils and consequently waste oils towards higher qualities and synthetic compounds. | | Unit | 1997 | 2017 | |---------------------|-------|--------------|-------------| | Flashpoint | ° C | 77 - 92 | 70 - 100 | | Lower heating value | MJ/kg | 38.5 - 39.5 | 38.5 - 39.5 | | Density | kg/m³ | 860 - 950 | 850 - 930 | | Viscosity @ 40 ° C | mm²/s | 30 - 120 | 49 - 60 | | Sulphur content | wt.% | 0.59 - 1.03 | 0.3 - 0.8 | | Chlorine content | wt.% | 0.018 - 0.12 | 0.01 - 0.11 | | Water content | wt.% | 4 - 7 | 1 - 10 | | Ash content | wt.% | 0.74 - 1.38 | 0.5 - 0.8 | | Sediment content | wt.% | 0.75 - 1.21 | 0.5 - 1 | | PCB | mg/kg | < 0.5 - 1.8 | < 0.5 - 1.5 | | PAH | mg/kg | 300 - 400 | 300 - 400 | | Lead | mg/kg | 62 - 86 | 5 - 16 | | Chromium | mg/kg | 3.2 -16 | 1 - 5 | | Copper | mg/kg | 25 - 117 | 15 - 30 | | Manganese | mg/kg | 0 - 50 | 15 - 26 | | Vanadium | mg/kg | 1 - 17 | 1 – 2 | | Tin | mg/kg | 1.1 - 5.8 | 0.5 - 1.5 | | Zinc | mg/kg | 615 - 753 | 500 - 700 | | Nickel | mg/kg | 2.2 7.9 | 1 - 3 | | Cobalt | mg/kg | 2.2 - 15 | 2.2 - 15 | | Cadmium | mg/kg | < 0.3 - 0.4 | 0.5 - 1 | Table 6: Comparison between a typical waste oil composition in 1997 and 2017. Data provided by a participating company. # 5 Description of the considered regeneration techniques The considered four techniques cover the whole range of base oil quality as described in section 2.2.2. Together, the four mentioned companies comprise about 60 % of all available waste oil in the EU. All below mentioned capacities refer to waste oil input. ## 5.1 For more than 60 years, operates a constantly developing regeneration for recycling of waste oils in with a today's input capacity of 125,000 Mg. The sales has regeneration plants in sales and in sales, which together have a capacity of 175,000 Mg. In all of them, base oils are produced from waste oil distillates by a modern solvent extraction technology (ESR). The whole process comprises several distillation steps for dewatering, gas oil separation and high vacuum thin film evaporation (WFD or Vaxon®) subsequently followed by solvent extraction. The base oils produced meet the highest quality requirements and are approved by many automobile manufacturers. The waste-free process of the Enhanced Selective Refining (ESR) efficiently separates all undesired constituents, e.g. polycyclic aromatic hydrocarbons (PAH) and organic heteroatom compounds from the distillate. The base oil produced in the European regeneration plants is to be classified as an API Group I++, it has a high viscosity index of about 120, a high degree of saturation, and a low evaporation loss. ## 5.2 It constitutes a modern unit which regenerates 38,000 Mg of mineral oils annually and provides a wide range of basic lubricants. At the same time, it is the only unit in _____, which produces heavy mineral oils (Bright stock). The process comprises flash, vacuum and high vacuum distillation by thin film evaporator, propane deasphalting and catalytic hydrotreatment of recovered lube oil, followed by fractionation. _____ produces high quality API Group I, having relatively high VI and low sulphur. #### 5.3 operates a modern waste oil refinery in the Industriepark It is the world-wide first facility which uses the process is the hydrogenation of base oils which is executed in parallel to the catalytic treatment of the oil and also the high yield of more than 70 % base oil. The core parts of the facility are the special catalysts which are connected in line and the hydrogen which is circulated in the system and is used both as an auxiliary material and as an energy source. The refinery has a capacity of about 2 x 80,000 Mg waste oil per year and is operating since spring 2004/2008. The plant produces high quality base oils of API group II which are characterized by nearly water-clear color, low sulphur content and a high viscosity index. ### 5.4 We have analyzed the technology of the plant which treats about 120,000 Mg of waste oil every year, thus producing about 80,000 Mg of rerefined base oil. has developed, jointly with the analysis and advanced technology enabling recovery of base oils from waste oils with properties similar to those of virgin base oils. This technology, named the properties alountries. Today, the new hydrofinishing unit installed in the produce, through a treatment with hydrogen at high pressure, base oils with API Group II characteristics, namely low sulphur and unsaturated content and very low aromatics content. # 6 Description of the substituted and other inflicted processes The processes substituted by regeneration of waste oil are: - Overview of considered process (chains) - The complex primary production chain from crude mineral oil via waxy distillates to base oil group I (see also Figure 6) as well as for diverse co-products which arise during regeneration processes. - The complex primary production chain from natural gas via i-decene synthesis to polyalpha-olefins (PAO, base oil group IV)¹. The reference system for comparing regeneration with the alternativ use of waste oil is described by: - The reference system - A common technique to process waste oil to fuel oil quality meeting the quality of low sulphur fuel oil (≤ 0,5 % S). Quality requirements for "processed fuel oil" are definded e.g. by the environment Agency from UK (EA 2009). - The processes substituted by the fuel oil production from waste oil. - The primary production chains for diverse co-products which arise during treatment processes. ## 6.1 Mineral oil refinery All refinery products mentioned above had already been modelled by the study in 2005. Within the scope of this study the authors have applied an updated version of the underlying refinery model, taking into account the developments at European level according to the BREF (Barthe et al. 2015). The Umberto refinery model is shown in Figure 6. Data sets for following products are calculated based on this model: Process chains from study 2005 updated - base oil group I - naphtha - light fuel oil - heavy fuel oil - bitumen $^{^{1}}$ Note: The regenerated base oils do not compare to advanced category IV base oils but rather to category I and II. However, since there is no LCA data for the category II and III base oils, a mixture of I and IV – based on the desired viscosity
index and thus quality – are used to simulate groups II and III. This is due to the fact as there is data available for group I and IV and moreover, in principle, category II and III base oils can be seen as mainly a mixture of a certain amount of PAO (IV) and category I base oil. Figure 6: Network model for the calculation of mass and energy flow of a virtual mineral oil refinery Waste oil to fuel oil ## 6.2 Treatment to fuel oil (reference system) #### 6.2.1 Three-stage treatment process Unlike the other processes, the technique to process waste oil to fuel oil was modelled completely anew. The authors refer to a data set applied by Kolshorn et al.(2000). The treatment to fuel oil option follows a three-stage process. After collection and transport, the waste oil is heated and chemically treated. Water, sulphurous acid and precipitants are added in order to extract heavy metals. Subsequently, the mixture of phases is separated in a decanter. The solid phase which has a high calorific value (up to 31 MJ/kg) is put to use in cement works (energetic recovery), whereas the process water is largely re-used in a cycle¹. As a second step, the remaining oil-rich phase is treated thermically in order to evaporate the highly volatile components. After the complete removal of the (undesirable) byproducts, fuller's earth is added. In a third step, the mixture is filtered in a filter press to separate the liquid phase (oil) and the remaining filter cake. The latter is recovered while the filtrate can be used as light fuel oil without further processing. The yield ratio is 850 kg fuel oil per Mg waste oil. The input-output data are given in Table 7. #### 6.2.2 Substituted fuel oil Section 6.1 describes the refinery model used for the calculation of data sets all types of mineral oil products. This includes the fuel oil replaced by recycled fuel oil from waste oil. In brief the overall process chain encompasses extraction and transport of the crude oil to the refinery, atmospheric and vacuum distillation, partly cracking processes and subsequent desulphurization to low sulphur fuel oil. System substituted by the reference system The selection of light fuel oil is justified by - a) low S-content, - b) corresponding heating value and viscosity and - c) the fact that such processed fuel oils are used to upgrade heavy fuels Treatment to fuel oil leads also to diverse residues which, such as oil sludge and press cake (see also Table 7). These mass flows are combusted in a cement kiln, substituting coal as regular fuel. | Input | | | Output | | | | |----------------------------|----------|------|-----------------------------------|----------|------|--| | Item | Quantity | Unit | Item | Quantity | Unit | | | waste oil (reference flow) | 1,000 | kg | fuel oil (light fuel oil quality) | 849.10 | Kg | | | sulphuric acid | 9 | kg | gas oil | 20.00 | Kg | | | Fuller's earth | 18 | kg | gases | 4.30 | Kg | | | electricity | 54,050 | kJ | light ends | 18.25 | Kg | | | thermal energy | 838,350 | kJ | press cake (→ energy recovery) | 22.60 | Kg | | | | | | oil sludge (→ energy recovery) | 18.75 | kg | | | | | | waste water | 100.00 | kg | | Table 7: Input (energy and auxiliary consumption) and output (yield and wastes) for treatment of waste oil to low sulphur fuel oil. ¹ About 30% of the added water has to be treated in a treatment plant. # 7 Results and interpretation In a first step, results are worked out for each of the four regeneration options assessed (section 7.1). The goal is to identify significant differences. In a second step, the average result of the four options will be compared to an alternative treatment and use as processed fuel oil (section 7.2). The average of the results of the four regeneration techniques represents the vast majority of regeneration capacities in Europe (see section 5). It allows a technology-neutral analysis of the impacts of regeneration, while techniques-related differences are discussed in section 7.1. As a final step of interpretation, additional sensitive aspects and parameters concerning data, system boundary, allocation rules and valuation approach are discussed (section 7.3). ## 7.1 Comparison of the four regeneration options The study does not aim to deliver arguments for a marketing competition between the companies considered. Therefore the results are presented in an anonymous way. Table 8 provides the impact category results for every regeneration option and the corresponding (substituted) equivalency processes. To give an example: Comparing regeneration with virgin base oil production - 1. Technique 1 leads to an emission of 365 kg of CO₂-equivalents per Mg waste oil, including combustion of by-products, natural gas for heat and steam, production of current, hydrogen and other auxiliaries. - 2. The benefit of technique 1 (substitution of base oil and other by products) leads to a prevention of 827 kg of CO_2 -equivalents per Mg waste oil, supposed the quality of the base oil substituted corresponds with group I in terms of VI. Supposed the quality equals the advanced case (VI \triangleq group I/IV), the saved GHG emission extends to 1,072 kg CO_2 -equivalents. - 3. To get the "net impact" of the technique 1 of regeneration the omitted burden (827 or 1,072) is to be subtracted from the burden created (365). Hence, technique 1 releases the global warming in the range of 462 to 707 kg CO₂-equivalents per Mg waste oil. | Regeneration Technique | | | | | | | |---|-------|-------|-------|-------|---------|--| | Reference: 1 Mg waste oil | 1 | 2 | 3 | 4 | Average | | | Resource depletion (MJ) | | | | | | | | Regeneration | 5.36 | 9.12 | 2.52 | 5.56 | 5,64 | | | Substituted processes | | | | | | | | base oil standard (VI \triangleq group I) | 47.9 | 48.1 | 46.7 | 47.6 | 47,6 | | | base oil advanced (VI \triangleq group I/IV) | 51.7 | 52.0 | 50.1 | 51.8 | 50,5 | | | Global warming (kg CO ₂ -Eq.) | | | | | | | | Regeneration | 365 | 577 | 190 | 516 | 412 | | | Substituted processes | | | | | | | | base oil standard (VI ≙ group I) | 827 | 838 | 783 | 869 | 830 | | | base oil advanced (VI ≙ group I/IV) | 1 072 | 1 094 | 1 006 | 1 144 | 1 079 | | | Acidification (kg SO ₂ -Eq.) | | | | | | | | Regeneration | 1.02 | 1.36 | 0.41 | 0.75 | 0,88 | | | Substituted processes | | | | | | | | base oil standard (VI \triangleq group I) | 4.43 | 4.49 | 4.18 | 4.69 | 4,45 | | | base oil advanced (VI \triangleq group I/IV) | 4.52 | 4.59 | 4.26 | 4.79 | 4,52 | | | Eutrophication (kg PO ₄ ³⁻ -Eq.) | | | | | | | | Regeneration | 0.089 | 0.138 | 0.029 | 0.089 | 0,086 | | | Substituted processes | | | | | | | | base oil standard (VI ≙ group I) | 0.181 | 0.181 | 0.174 | 0.182 | 0,18 | | | base oil advanced (VI \triangleq group I/IV) | 0.252 | 0.256 | 0.239 | 0.262 | 0,24 | | | Carcinogenic risk potential (mg As-Eq.) | | | | | | | | Regeneration | 4.1 | 11 | 2.5 | 14 | 7,82 | | | Substituted processes | | | | | | | | base oil standard (VI ≙ group I) | 242 | 239 | 233 | 246 | 240 | | | base oil advanced (VI ≙ group I/IV) | 242 | 239 | 233 | 246 | 240 | | | Fine particulates (kg PM _{2.5} -Eq.) | | | | | | | | Regeneration | 0.93 | 1.33 | 0.31 | 0.74 | 0,83 | | | Substituted processes | | | | | | | | base oil standard (VI \triangleq group I) | 3.13 | 3.17 | 2.97 | 3.28 | 3,14 | | | base oil advanced (VI ≙ group I/IV) | 3.48 | 3.53 | 3.29 | 3.67 | 3,41 | | Table 8: Results of impact assessment for the 4 technical options according to burdens by regeneration system and equivalency system Figure 7 up to Figure 12 illustrate the impact assessment results given in Table 8. Category by category the diagrams are designed as follows: - Left bar: the impact by the regeneration system; corresponds to the upper part of the system flow chart given in Figure 3. - The two bars in the middle: the impact of the substituted primary production of base oil; corresponds to the lower part of the system flow chart given in Figure 3 - The two right bars: the net balance between impact by the regeneration system minus the impact of the substituted primary production. Each bar is subdivided to show the lowest, the highest and the average value each. Figure 7 shows the result for resource depletion represented by the cumulated fossil energy demand. The advantage of regeneration against the substituted equivalent system (including primary base oil production) is prevalent reflecting the benefit of safeguarding the fossil feedstock of base oil by recycling. Of low significance is the range between minimum and maximum within the four assessed techniques. Fossil resource depletion Figure 7: Impact assessment results for resource depletion; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum. Figure 8 shows the global warming balance. Unlike the resource category this item is determined only by the GHG emission due to processes along the respective production chains. At its maximum the impact of regeneration can be around half of the average impact of the substituted equivalency processes. The range between the techniques is more significant here, but even the minimum case still shows a clear advantage against the equivalency processes. This impact category shows distinct advantages of producing advanced base oil quality instead of standard quality, whereas the substitution of standard quality still leads to clearly better results regarding the net balances. Global Warming Potential Figure 8: Impact assessment results for global warming; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum The results for acidification (see Figure 9) are even more significant than for GWP. The impact of the regeneration system is much smaller than the equivalency system which can be traced on the rather high sulfur dioxide emissions connected with primary
mineral oil refining. The range between the techniques as such is comparably high, while this range does not appear to be relevant when focus is on the net balance. Acidification Terrestrial eutrophication (see Figure 10) gives a picture similar to GWP: results are even more significant than for GWP: At its maximum the impact of regeneration can be around half of the average impact of the substituted equivalency processes. The range between the techniques is also more significant here, but again the minimum case still shows a clear advantage, compared to the equivalency processes. Terrestrial eutrophication This impact category shows distinct advantages of producing advanced base oil quality instead of standard quality, whereas the substitution of standard quality still leads to clearly better results regarding the net balances. Figure 9: Impact assessment results for acidification; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum Figure 10: Impact assessment results for eutrophication; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum This study covers the impact category human toxicity by the indicators carcinogenic risk potential (arsenic equivalents) (see Figure 11) and fine particulates (PM2.5, see Figure 12) showing rather different pictures. **Human toxicity** Carcinogenic risk potential: the regeneration system shows quite low impacts. Lower emission levels are on the one hand due to the fact that plants are mostly more recently installed and therefore equipped with abatement measures. On the other hand the applied fuels (natural gas or co-processed gases) are more or less free from heavy metals etc. On the contrary the primary equivalency processes are affected by heavy fuel oil application, emitting significant amounts of nickel. This indicator shows no significant difference between the substitution of advanced base oil quality and standard quality because the primary production of virgin group I base oil already shows high specific emissions. Fine particulates: gives a picture similar to terrestrial eutrophication. This is due to the NO_{x} , which contributes relevantly to the impact in both categories. Figure 11: Impact assessment results for human toxicity represented by carcinogenic risk potential; showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum Figure 12: Impact assessment results for human toxicity represented by fine particulates (PM2.5 showing the average result (arithmetic mean) of the four techniques as well as the individual minimum and maximum. Figure 13 gives a synopsis on all the impact category results listed in Table 8 and described within the text and diagrams above. The numbers are scaled on the particular result of "regeneration" (= 1) to enable combining the different categories with different units each within one graph. The bars representing the substituted primary processes show the factor relative to regeneration. The main bars stand for the average result of the four techniques. The deviation bars show the range of the four techniques in detail. In fact, Figure 13 gathers all the information shown in Figure 7 through Figure 12 into one picture. Synopsis of impact categories on on on One motivation to highlight this synopsis within this report is to allow a direct comparison with Fehrenbach (2005): Table 8 and Figure 13 correspond to Table 7-2 and Figure 7-1 enclosed by the study 2005. Example: GWP100 (values in kg CO_2 -Eq.) taken from Table 8: -regeneration (average): 412 \rightarrow 1 - subst. base oil standard (average): 830 \rightarrow 2,01 (= 830/412) Some differences appear to be obvious with focus on fossil resources and carcinogenic risk potential. These changes are due to the following reasons: In general, the percentaged scaling is prone to display large bar lenghths even for small impacts. If the index-1-basis is actually small at absolute scale, doubling of the value may be of low significance in reality. - This is true e.g. for *resource depletion*: In 2005, the substituted primary system has shown a 35-fold higher demand than the regeneration system. The point is: The energy demand of the regeneration system is higher according to the updated data. However, this increase is still very low in absolute figures. Therefore, the high value of saved resources is *reduced* to ten timesthe demand of the regeneration system, being still a high saving rate in absolute figures - It is the other way around with carcinogenic risk potential, where we now state a 30fold better result in relation to saved emissions. This is due to a decrease of the on-site emissions of the regeneration plants from low level in 2005 to an even lower level today. Figure 13: Total view on the impact assessment results; all figures related to the particular result of "regeneration", main bars: average result (arithmetic mean) of the four techniques, deviation bars: range of the four techniques # 7.2 Comparison of regeneration to base oil with processing to fuel oil # 7.2.1 Impact assessment results In Table 9 the impact assessment results for: - Regeneration; This comprises the arithmetic mean of the aformentioned four processes (see Chapter 5), substituting either base oil standard (Viskosity Index (VI) equivalent to a group I type base oil) or base oil advanced (VI equivalent to a 70:30 mixture of group I/IV type base oils) and - · The treatment to fuel oil, substituting light fuel oil quality are shown in comparison. Within the middle column this table therefore repeats the average data from Table 8. | | Regeneratio | on | treatment to fuel oil | | |-----------------------------|--------------------------|-------|-----------------------|-------| | Fossil resources (MJ) | burden of | | burden of | | | | regeneration | 5,64 | treatment | 0,27 | | | subst. base oil standard | 47,6 | subst. light fuel oil | 40,5 | | | subst. base oil advanced | 50,5 | | | | Global warming | burden of | | burden of | | | (kg CO ₂ -Eq.) | regeneration | 412 | treatment | 234 | | | subst. base oil standard | 830 | subst. light fuel oil | 426 | | | subst. base oil advanced | 1079 | | | | Acidification | burden of | | burden of | | | (kg SO ₂ -Eq.) | regeneration | 0,88 | treatment | 1,21 | | | subst. base oil standard | 4,45 | subst. light fuel oil | 1,89 | | | subst. base oil advanced | 4,52 | | | | Eutrophication | burden of | | burden of | | | $(kg PO_4^{3+}-Eq.)$ | regeneration | 0,086 | treatment | 0,019 | | | subst. base oil standard | 0,18 | subst. light fuel oil | 0,084 | | | subst. base oil advanced | 0,236 | | | | Carcinogenic risk potential | burden of | | burden of | | | (g As-Eq.) | regeneration | 7,82 | treatment | 24 | | | subst. base oil standard | 240 | subst. light fuel oil | 129 | | | subst. base oil advanced | 240 | | | | Fine particulates | burden of | | burden of | | | (kg PM ₁₀ -Eq.) | regeneration | 0,83 | treatment | 0,66 | | | subst. base oil standard | 3,14 | subst. light fuel oil | 1,36 | | | subst. base oil advanced | 3,41 | | | Table 9: Line-up of impact results for regeneration (average of four) and treatment to fuel oil; all results based of 1 Mg of recovered waste oil Figure 7 until Figure 12 display the basic impact assessment results from Table 9. Within this section this net balancing is also done for the reference system – treatment to fuel oil, based on the results given in Table 9 (right column). Figure 14 explains the stepwise combination of the single results to the final result: the difference between regeneration and treatment to fuel oil. The example refers to the GWP data which can be found in Table 9. It shows an advantage of 474 kg CO_2 eq. per Mg waste oil in favor of regeneration to advanced base oil. Figure 14: Illustrative example for the final combination of the impact assessment result to analyze the difference between regeneration and treatment to fuel oil. For a synopsis of all impact categories we refer once again to diagram layout used by Fehrenbach (2005) in order to allow a direct comparison with the previous study. To that end Figure 14 corresponds to Figure 7-2 enclosed by the study 2005, where the "net impacts" of all categories for - · regeneration and substitution of standard base oil, - · regeneration and substitution of advanced base oil, - treatment to fuel oil and substitution of low sulphur fuel oil are shown. Again in order to allow combining the different categories with different units each within one graph, the value for regeneration (substituting standard base oi) is set to be 1 and the other values are scaled correspondingly. In fact all options considered contribute to environmental relief in all categories. on on on | Example: GWP100 (values in | kg CO ₂ -Eq.): | | | |------------------------------|---------------------------|------------------------|------------| | - burden: of regeneration: | 412 | burden of treatment: | 234 | | - subst. base oil standard: | 830 | subst. light fuel oil: | <u>426</u> | | net balance: | - 418 | net balance: | -192 | | advantage of regeneration: 2 | 226 (= 418 – 192 |) | | | relation: -418 / -192 = 2,2 | | | | ## The diagram shows that: - Regeneration to standard base oil offers advantages throughout all analysed impact categories compared with treatment to fuel oil; in case of global warming, acidification, carcinogenic risk and fine particulates, the relative advantage is higher than a factor 2. - The advantage of regeneration to base oil of advanced quality is even more significant. Figure 15: Synopsis on the comparable impact assessment results – regeneration (average) vs. treatment to fuel; values <1 describe better performance than regeneration and substitution of standard base oil and vice versa. # 7.2.2 Normalization of impact assessment results and grouping In the same way as in the section above,
the differences among the options in the impact assessment results are calculated and normalized using Person Equivalency Values (PEV). These illustrations again show the distinct advantages of regeneration against treatment to fuel in all impact categories and the advantages of the substitution of base oil advanced (VI \triangleq group I/IV) against base oil standard (VI \triangleq group I). The advantages range between 90,000 PEV (acidification) and at least around 5,000 PEV (eutrophication). In terms of Global warming the advantage of the advanced case is 34,000 PE, that is to say: were regeneration in Europe stopped and waste oil treated to fuel oil the greenhouse gas emissions would increase equivalent to the emission accounted for 34,000 average German inhabitants in 2015. #### Example: GWP100: - advantage of regeneration to base oil of advanced quality vs. treatment to fuel oil: = $419 \text{ kg CO}_2\text{-Eq./Mg waste oil}$ - multiplied with 950,000 Mg waste oil per year = $400,000 \text{ Mg CO}_2\text{-Eq.}$ per year - divided by the PEV = 34,000 PEVs (11.8 Mg CO₂-Eq. per year and person) Table 10 gives an overview of the different investigated treatment options, standardized to PEV relative to the most beneficial treatment option in each investigated impact category. The figures correspond to the results presented in Table 9 multiplied by the total amount of available waste oil in Europe per year (950,000 Mg) and divided by the specific PEV for each impact category (for reference, see example above). For example, if one would consider treating the total amount of available waste oil to fuel oil, this would lead to a plus in GHG emissions equivalent to the average amount of GHG emissions of 34,000 average German citizens per year, compared to regeneration to base oil with advanced quality. Figure 16 presents another overview of these results. The x-axis represents the amount of PEV relative to the other treatment options, with both regeneration systems to the right and the reference system to the left. All results refer to the average of the four investigated techniques. | | Regeneration (standard quality) | Regeneration (advanced quality) | Reference case
(fuel oil) | |----------------------|---------------------------------|---------------------------------|------------------------------| | Fossil resources | 21,000 | 0 | 33,000 | | Global warming | 16,000 | ① | 34,000 | | Acidification | 2,000 | ① | 89,000 | | Eutrophication | 11,000 | ① | 16,000 | | carc. risk potential | 0 | ① | 14,000 | | Fine particulates | 11,000 | 0 | 75,000 | | Fossil resources | | 0 | | | Global warming | | 0 | | | Acidification | • | • | | | Eutrophication | | 0 | | | Carc. risk potential | 0 | • | | | Fine particulates | | • | | Scaled by specific contribution in PEV related to 950,000 Mg of waste oil; the figures resp. the number of squares shows the deviation from the most beneficial option in each case, which is marked by 0; Ecological priority: = A (very high), = B (high), = C (medium), based on the state of the art in application since UBA (1999) Table 10: Overview of impact-related and normalized differences between regeneration to base oil and processing to fuel oil; in PEV 2015. ¹ square corresponds to 5,000 PEV (rounded); differences below 2,500 PEV are marked by \bullet , meaning, the more circles / squares, the worse the option compared to the most beneficial option. Ecological Priority based on the state of the art in application since UBA (1999) Figure 16: Overview of impact-related and normalized differences between average regeneration and treatment to fuel oil Another option to illustrate these numbers might be a comparison with transport efforts: 400,000 Mg of CO_2 -Eq. correspond to the GHG emissions caused by: - one person traveling 3,7 billion km in a car¹, which would equal: during 400,000 times from Lisboa to Moscow back and forth. - one waste oil truck driving 200 million km. - or transporting 950,000 Mg of waste oil by truck over 4,200 km. $^{^{1}}$ On the basis of TREMOD (Transport Emission Model), we assume an average fuel consumption of 7.8 litres / $100 \, \mathrm{km}$. # 7.3 Sensitivity analysis Fehrenbach (2005) analyzed that the following items contain assumptions of more or less relevant influence on the results: - Allocation method - Fuel substitution - Distribution distances Aspect 1 and 3 don't need any further examination. Their influence has been sufficiently evaluated within the former study. Apart from those aspects, the authors would like to highlight following points of attention: - We still deem "fuel substitution" worth consideration - How strongly does the selection of regeneration technique affect the result in other words: how robust is the average result? - Is there a bias concering data quality of primarily collected data from regeneration and possibly outdated information about the refence system? - How strongly does the base oil quality supposed to be achieved by the regeneration techniques affect the result? #### 7.3.1 Fuel substitution The authors still deem "fuel substitution" worth consideration. There are two aspects to be pointed out: - Exactly which fuel is substituted by treated fuel oil (reference system)? - How about emissions from fuel oil use? The authors determined that type of fuel substituted by treated fuel oil to a fuel oil of light to medium density and low sulphur content. We substantiate this by the practice using treated fuel oil for upgrading heavy fuel, which is normally done by admixing low sulphur fuel oil. Given that heavy fuel oil would be substituted by the treated waste oil, hypothetically, the results would slightly change in favor of regeneration within nearly all of the impact categories because the effort to produce heavy fuel is lower than for light heating oil. Figure 17 repeats the results in Figure 15 and adds results based on substitution of heavy fuel oil (HFO) by the reference system. Consequential life cycle thinking however would clearly argue against assuming heavy fuel oil to be substituted, because in general, refineries do the utmost to reduce the share of heavy fuel oil in their product portfolios. Thus, it is unlikely that offering an alternative (recycling) fuel would lead to reduced production of heavy fuel oil. Figure 17: Total view on the comparable impact assessment results – regeneration (average) vs. treatment to fuel – sensitivity of the choice of fuel oil type -; values <1 describe better performance than regeneration (base oil group I) and vice versa. With regard to the second aspect, the use phase of the treated fuel oil has been left out of the system boundary. This setting was founded on the assumption that the secondary fuel oil from waste oil treatment should equal the substituted light heating oil regarding their compositions. In fact, no sufficient data is available to consolidate this assumption. While the authors suppose the composition of standard light fuel oil and the treated fuel oil to be identical, in reality there might be differences which might lead to slight modifications in results. Assuming that the treated fuel oil would have lower contents of heavy metals (e.g. Nickel) than the standard oil, the result might change within the category of carcinogenic risk potential. # **7.3.2** Does the average of four regeneration techniques properly represent the single techniques? The analysis and interpretation given in section 7.1 should give sufficient answer to that question. In fact there are large ranges between the four techniques as for the impacts of the regeneration system. For resource depletion there is more than a factor 3 between the technique with lowest energy demand and the one with the highest demand. However the avoided impact due to substitution of virgin base oil is as factor 5 higher than the upper end of the range between the techniques. For GWP these relations are much closer: again the range between the techniques spans by a factor 3 and in this case the substituted impacts are not that distanced (just a factor 1.3) from the most GHG intensive technique. However also in this case there is still a net saving rate, even if only standard base oil is substituted. For Eutrophication the situation is even a little more close, but even here the "worst case" selection is saving net emissions. Acidification and the toxicity indicators are rather distinct in that point, similarly to resource depletion. It can be summarized that the average result gives a solid picture of the overall performance of the assessed regeneration techniques, taking into account that some perform better than others and vice versa. # 7.3.3 Temporal bias concerning the reference system? While we state that the data collected directly from the operators of the four regeneration techniques is very current (\rightarrow 12 month average in 2016), we have applied 15 year old data to model the reference system (treatment to fuel). This might lead to presume a temporal bias within the data applied. The following argument should invalidate this presumption: the impact of the treatment process is in most cases significantly lower that from regeneration. This might be clear taking the much higher effort into account for regeneration to high quality products as base oils. As shown in Figure 18 this is not true for acidification and carcinogenic risk potential. However just these two categories are very strongly dominated by the equivalency processes while the waste oil processing system is not determining the result. Figure 19 illustrates this referring to acidification: Even if the emissions from treatment to fuel oil (basically 1.21 kg SO_2 eq/Mg waste oil) would be zero, the difference between regeneration and treatment (basically 2.89 kg SO_2 eq/Mg waste oil) would still be clearly in favor of regeneration. Figure 18: Comparison of regeneration (average) and treatment processes (no substituted
equivalency system considered) scaled on regeneration for each impact category. Figure 19: Acidification for regeneration, treatment and its equivalency systems and final combination of these components for the comparison of both opions. Given the current performance of facilities processing waste oil to fuel oil would be much better; there would not be an effect on the LCA result. ### 7.3.4 How does the base oil quality affect the results? Section 2.2.2 describes the applied correlation model based on the viscosity index (VI). This has been developed to bridge a gap within the continuous transition of base oil quality as described by the AP groups from I to IV. This gap refers mainly to the groups II and III, which are typical for high quality recycling base oils. The applied model does an interpolation between group I (conventional base oil) and group IV (PAO), presuming that a continuously increasing technical quality should correlated with deployed effort — in other words: caused environmental impacts. Of course this presumption means uncertainty. We cannot exclude the possibility that a group II/III primary base oil could be produced with lower environmental burden than group I virgin base oil. As long as the environmental burden from producing high quality virgin base oil (up to group III) still exceeds the LCA performance of group I base oil, the conclusions of this study will be still valid. Given the environmental burden of such a high quality base oil should be lower than that for the production of group I, there is still a wide gap to fill before we could claim equivalency between regeneration and treatment to fuel oil. The results for GWP given in Figure 20 (as a replication of Figure 14) show, that the gap is approx. 220 kg CO_2 eq/Mg waste oil. That would allow a reduction of GWP emission from virgin base oil production from 830 kg CO_2 eq (if group I, standard) down to 610 kg CO_2 eq before the advantage of regeneration would be levelled out. Figure 20: GWP for regeneration, treatment and its equivalency systems and final combination of these components for the comparison of both opions. # 7.3.5 Summary Considering the number of analyzed sensitive aspect, the authors deem the result and subsequent conclusions robust in the light of the goal and scope as defined in this study. # 8 Conclusion Comparing these results with the results of the study in 2005 we draw the following conclusions: - Most importantly, the environmental advantages of regeneration of waste oil to base oil were apparent in all applied impact categories. This holds true even in the case that just base oil group I ("standard") quality is substituted. This is of particular importance since regeneration in Fehrenbach (2005) was disadvantageous in terms of the impact category global warming when compared with the reference system. - Substitution of higher base oil groups ("advanced" e.g. group II+) leads to even better results for all applied impact categories.¹ The most relevant reason for this difference from the study of 2005 is the change concerning alternative treatment: In the early years of last decade, a relevant share of used oil was used as fuel in cement works – and cement works predominantly use diverse types of coal as standard fuel. Substituting any type of coal consequently leads to extraordinary high credits – credits in favor of the cement work option. Therefore, earlier LCAs for used oil regeneration were always captivated by the issue of how cement works deal with fuel. A central conclusion transmitted from the former study might be formulated as follows: as long as the competing reference system is able to claim it desists from a highly climate-crucial practice like coal burning, any regeneration system – even the most efficient and most advanced – will merely excel the coal-substitution credit. Today the cement work option is just of marginal relevance regarding the European practice of waste oil treatment. Logically the reference system has been adapted to the actually relevant one, which is treatment to fuel oil. However there are other points of attention, in particular those referring to the update of data: - → The update of data by the regeneration companies leads to improved results with regard to some aspects, but not to others: in fact we applied data from real practice within this study and eliminated uncertainties from former assumptions based on few experiences. - Nevertheless, the results for regeneration are positive in all respects. - The update of refinery data also included some improvements within the system producing the substituted base oils and other mineral oil products; these improvements lower the positive net results for the regeneration but do not lead to real significant changes regarding the overall result. ¹ As described in section 2.2.3 the quality produced by a regeneration company is determined by a number of factors, such as: a.) the quality of the collected waste oil; b.) the applied level of technology (all techniques under study are qualified to produce high qualities; c.) the base oil market the company is serving. In summary, the regeneration of waste oil for the recovery of base oils leads to significant resource preservation and relief from environmental burdens. This study underlines the results of 2005 and enhances the previous conclusions, stating that an advanced regeneration technology shall be the favored way to keep waste oil as long as possible as high-graded material within the circular economy. In brief: this LCA supports the higher ranking of regeneration¹ versus treatment to fuel oil² according to the waste hierarchy required by EU policies. ¹ corresponding to recycling in sense of the waste directive 2008/98/EC ² explicitly excluded from recycling according to the waste directive 2008/98/EC, Article 3, point 17 # 9 Literature Barthe, P., Chaugny, M., Roudier, S., Sancho, L.D. (2015): Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas. European Integrated Pollution Prevention and Control Bureau (EIPPCB) of the European Commission's Joint Research Centre (JRC). https://eippcb.jrc.ec.europa.eu/reference/BREF/REF BREF 2015.pdf Chevron Phillips (2015): Synthetic Base Oil - Outlook – PAO http://www.essenscia.be/fr/Document/Download/15238) CML 2013: CML-IA database that contains characterization factors for life cycle impact assessment (LCIA) for all baseline characterization methods mentioned in [CML 2002]. Database CML-IA v3.7, Institute of Environmental Sciences, Leiden University, Leiden, 2013; De Leeuw (2002): Leeuw, F.D.: A set of emission categories for long-range transboundary air pollution. Bilthoven 2002 Fehrenbach, H. (2005): Ecological and energetic assessment of regeneration waste oils to base oils: Substitution of primarily produced base oils including semi-synthetic and synthetic compounds; behalf of GEIR - Groupement Européen de l'Industrie de la Régénération; Heidelberg, 2005. http://www.geir-rerefining.org/documents/LCA en shortversion.pdf Fehrenbach et al (2017): Biomassekaskaden: Mehr Ressourceneffizienz durch Kaskadennutzung von Biomasse – von der Theorie zur Praxis; Dessau-Roßlau, 2017. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-06-13 texte 53-2017 biokaskaden anlage.pdf GEIR (2016): Waste Oil Utilization -2014; fact sheet by GEIR. GEMIS (2014): Globales Emissions-Modell Integrierter Systeme (GEMIS), version 4.9, http://www.iinas.org/gemis-download-de.html - Geyer, R., Kuczenski, B., Henderson, A., Zink, T. (2013): Life Cycle Assessment of Waste Oil Management in California, on behalf of California Department of Resources Recycling and Recovery; Santa Barbara, 2003 http://www.calrecycle.ca.gov/Publications/Detail.aspx?PublicationID=1465 Grice, L. N., Nobel, C. E., Longshore, L., Huntley, R., DeVierno, A. L.: Life Cycle Carbon Footprint of Re-Refined versus Base Oil That Is Not Re-Refined; ACS Sustainable Chem. Eng., Publication Date (Web): October 25, 2013, American Chemical Society http://pubs.acs.org/doi/abs/10.1021/sc400182k Heijungs et al 1992: Heijungs. R.. J. Guinée. G. Huppes. R.M. Lankreijer. H.A. Udo de Haes. A. Wegener Sleeswijk. A.M.M. Ansems. P.G. Eggels. R van Duin. H.P. de Goede. 1992: Envi- ronmental Life Cycle Assessment of products. Guide and Backgrounds, Centre of Environmental Science (CML). Leiden University. Leiden. IPCC (2013): The Physical Science Basis. Working Group I contribution to the IPCC Fifth Assessment; Editor.: Intergovernmental Panel on Climate Change. 30. September 2013, http://www.ipcc.ch/report/ar5/wg1/ IPCC (1996): Climate Change 1995 - The Science of Climate Change; Editor.: Intergovernmental Panel on Climate Change. 1996 https://www.ipcc.ch/ipccreports/sar/wg I/ipcc sar wg I full report.pdf IRIS 2006: Environmental Protection Agency (US-EPA): Environmental and Risk Assessment Software, Washington D.C., 1996 ISO/TS 14067: Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication; First edition 2013-05-15 Kolshorn, K.-U., Fehrenbach, H. (2000): Ökologische Bilanzierung von Altöl-Verwertungswegen; Report Texte 20/00, on behalf of the Federal Environment Agency (UBA); 2000 Lubes'n'Greases (2017): Global Guide to Nonconventional Base Stocks https://pubs.lubesngreases.com/base-stock-guides/ Nieschalk (2004): Ermittlung der Energieaufwendungen bei der Herstellung von Polyalpha-Olefinen als Grundlage für einen ökobilanziellen Vergleich von Altölverwertungsoptionen; thesis submitted to the University of Cottbus, 2004 Phadke, M., Singh, A.K. (2017): Global Synthetic Lubricant Basestocks - Global Market Overview, 2016-2021; presentation at: Bologna, Italy October 23, 2017 UBA - Umweltbundesamt
(2012): Daten zum Verkehr. Ausgabe 2012; https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4364.pdf UBA - Umweltbundesamt (1999): Bewertung in Ökobilanzen. Methode des Umweltbundesamtes zur Normierung von Wirkungsindikatoren, Ordnung (Rangbildung) von Wirkungskategorien und zur Auswertung nach ISO 14042 und 14043. Version '99; UBA Texte 92/9 UBA – Umweltbundesamt (1995): Umweltbundesamt (Publisher): Ökobilanz für Getränkeverpackungen. Datengrundlagen. Berlin, 1995. (UBA-Texte 52/95) Weidema, Wesnæs (1996): Data quality management for life cycle inventories—an example of using data quality indicators. Journal of Cleaner Production 4(3-4):167–174 WRAP (2009): Processed Fuel Oil (PFO) - End of waste criteria for the production and use of processed fuel oil from waste lubricating oils; Quality report; Bristol 2009 https://www.gov.uk/government/publications/quality-protocol-processed-fuel-oil-pfo ### Annex I Process information spread sheet The following figure shows the aforementioned questionnaire that the participating companies filled out. This information provided the basis for the modelling in UMBERTO. Figure 21 Questionnaire for the participating companies # Critical Review Statement according to ISO 14040 and 14044 of the study # LCA for regeneration of waste oil to base oil Updating the study "Ecological and energetic assessment of re-refining waste oils to base oils Substitution of primarily produced base oils including semi-synthetic and synthetic compounds" at the end of the study to the Commissioner: GEIR (Groupement Européen de l'Industrie de la Régénération), Brussels Conducted by ifeu GmbH, Heidelberg, Germany (the "Practitioner") Performed for GEIR (Groupement Européen de l'Industrie de la Régénération), Brussels (the "Commissioner") by Birgit Grahl (chair) Chris Foster Sébastien Soleille 12. April 2018 ### Content | 1. | Procedural Aspects of the Critical Review | 2 | |------|---|---| | 2. | General Comments | 3 | | 3. | Statements by the reviewers as required by ISO 14044 | 4 | | 3.1 | Consistency of the methods with ISO 14040 and 14044 | 4 | | 3.2 | Scientific and technical validity of the methods used | 5 | | 3.3 | Appropriateness of data in relation to the goal of the study | 6 | | 3.4 | Assessment of interpretation referring to limitations and goal of the study | 7 | | 3.5 | Transparency and consistency of study report | 7 | | 4 | Conclusion | 7 | | Refe | erences: | 8 | | Add | resses of the reviewers: | 8 | # 1. Procedural Aspects of the Critical Review The Critical Review (CR) was commissioned by GEIR (Groupement Européen de l'Industrie de la Régénération), Brussels, Belgium (GEIR) on 16th October 2017 as Critical Review at the end of the study. The LCA study was conducted by ifeu GmbH, Heidelberg, Gemany (ifeu). The reviewers received the Report of the study on 16th October 2017. Because the study is an update of the study "Ecological and energetic assessment of re-refining waste oils to base oils (Substitution of primarily produced base oils including semi-synthetic and synthetic compounds)" conducted in 2005 by ifeu, and includes references to that study, the reviewers received the 2005 study as well. The reviewers sent a list of detailed comments on 30th October 2017 to the practitioner and the commissioner which were discussed in a telephone conference on 6th November 2017. An online model and data check was performed by Chris Foster on 20th October 2017. Based on these discussions the reviewers received a revised report on 6th February 2018. A few questions were still open and the reviewers send a list of comments on 23rd February 2018, receiving an updated version on 12th March 2018. Two queries of the practitioner were answered by the panel on 26th March and the answers considered in the Final Report. The review panel received the Final Report on 11. April 2018 and the statements and comments below are based on this final version. Formally this critical review is a review by "interested parties" (panel method) according to ISO 14040 section 7.3.3 [1] and ISO 14044 section 4.2.3.7 and 6.3 [2] because the study includes comparative assertions intended for external communication. Different technological options for waste oil treatment besides re-refining are considered; thus competing technologies as well as primary production systems are included, and the results of the study are intended to be communicated to policymakers and stakeholders in the field of waste management for waste oil. Despite this formal status, however, the inclusion of further representatives of "interested parties" is optional and was not explicitly intended in this study. The review panel is neutral with regard to and independent of particular commercial interests. The panel had to be aware of issues relevant to other interested parties, as it was outside the scope of the present project to invite governmental or non-governmental organizations or other interested parties, e.g. competitors. The reviewers emphasise the open and constructive atmosphere of the project. All necessary data were presented to the reviewers and all issues were discussed openly. All comments of the panel have been treated by the practitioner with sufficient detail in the final report to which this CR statement refers. The resulting critical review statement represents the consensus between the reviewers. Note: The present CR statement is delivered to GEIR (Groupement Européen de l'Industrie de la Régénération). The CR panel cannot be held responsible for the use of its work by any third party. The conclusions of the CR panel cover the full report from the study for GEIR "Updating the study Ecological and energetic assessment of re-refining waste oils to base oils - Substitution of primarily produced base oils including semi-synthetic and synthetic compounds" - dated 10. April 2018 and no other report, extract or publication which may eventually be undertaken. The CR panel conclusions are stated with regard to the current state of the art and the information which has been received. The conclusions expressed by the CR panel are specific to the context and content of the present study only and shall not be generalised any further. ### 2. General Comments The study investigates the environmental performance of re-refining waste oil to base oils. Four techniques of re-refining in four companies were investigated. As appropriate for LCA applied to waste management, the modelling of re-refining waste oil to base oil considers the substitution of the primary production of base oil (substituted equivalent system; also called equivalency system in the study). The equivalency systems considered in the study are the primary production of base oil group I, Poly-alpha-olefins and base oil group IV. In order to compare re-refining with other options for waste oil management a reference system is investigated. The reference system chosen represents the most relevant waste oil management technology, besides re-refining, currently operating in Europe. Based on statistical data from 2014, recovery to fuel oil is considered as the reference system. In this case the primary production of fuel oil is considered as the equivalency system. Thus the modelling of the re-refining system (system under investigation) and of the reference system follow the same logic. All systems chosen are relevant and briefly but sufficiently described. The reference system considered is different from that in the 2005 study because the use of waste oil in cement kilns, which was included at that time, is of minor relevance today. This change is appropriate, based on the statistical data presented to characterise the current situation in Europe. The changes in the present study (update) compared to the study conducted in 2005 are clearly presented in a table. Besides the current reference system, two very important updates are included: firstly, technologies that were in the pilot phase in 2005 are normal practice in 2017 and hence the inventory data of the foreground system are measured data from operational plant in 2016. Secondly, an updated version of the ifeu refinery model is used to calculate substituted primary production of fuel oil and relevant substituted base oil components The goal of the study is formulated as follows: "The goal of this study is to provide an updated and forward-looking view on the ecological and energetic aspects of regeneration of waste oil." To achieve this goal four key tasks listed: - Outline the current situation in the field of waste oil management in Europe and the key developments within the last ten years. - Modelling and comparing the four selected and advanced techniques of regeneration taking their environmental impact and benefits due to the substitution of primary products into account. - Comparing the average result of the four advanced regeneration techniques considered with the reference case: the most relevant alternative treatment of waste oil in Europe. - Disclosing and discussing the most decisive parameters in a transparent way. The key tasks are carried out properly. Methodology, results and interpretation are proportionate to the goal. ## 3. Statements by the reviewers as required by ISO 14044 According to ISO 14044 section 6.1 "The critical review process shall ensure that: - the methods used to carry out the LCA are consistent with this International Standard, - the methods used to carry out the LCA are scientifically and technically valid, - the data used are appropriate and reasonable in relation to the goal of the study, - the interpretations reflect the limitations identified and the goal of the study and - the study report is transparent and consistent." In the following sections 3.1 to 3.5, these items are discussed
according to our best judgement and considering the ISO standards 14040 and 14044. ### 3.1 Consistency of the methods with ISO 14040 and 14044 The study has been performed according to the general structure of LCA required in ISO 14040 and also to the requirements stated in ISO 14044. Although the report does not strictly follow the general structure of LCA reporting (Goal & Scope definition – Life cycle inventory analysis (LCI) – Life cycle impact assessment (LCIA) - Interpretation) all relevant information can easily be identified. The current study referred back to the published 2005-study with regard to all the information that did not change from that study. Differences are suitably justified and described transparently, thus no fundamental information is missing. Results are clearly presented and conclusions are deduced from the results in a comprehensible manner. The chosen functional unit is input related, and defined as the treatment of 1 Mg waste oil. An input related functional unit is common, established and reasonable for LCA in waste management. The study adopts the entire quantity of regenerated waste oil in the European Union in 2014 as the reference unit used in the interpretation (normalisation). This is an appropriate choice to analyse, understand and discuss the potential environmental impacts of the technologies investigated. As in the 2005 stud,y Umberto software (in the current version 5.5) has been chosen for LCA modelling in the current update study and thus continuity regarding the software is ensured. The technological system boundaries did not change. In the inventory analysis of the current update study process data are used, collected for 2016 by the companies involved,. Also the background data such as electricity or auxiliary material were updated to the most recent available information. The investigation of the same impact categories as in the 2005 study makes sense in an update study. The choice is justified in the 2005 study and consistent with ISO standards 14040 and 14044. Some useful and valid adjustments were made to the characterisation models. The interpretation refers to the data presented as results of the impact assessment. Transparently described normalisation, calculation of Person Equivalency Values (PEV) and grouping as in the 2005 study helps the reader to have a clearer picture concerning the relevance of the potential impacts analysed. Data are not over-interpreted. Concerning sensitivity analyses the current update study refers to those performed in the 2005-study. It is reasonable that no new sensitivity analyses are needed in the update study. Detailed, additional, semi-quantitative estimations concerning fuel substitution options are included and are plausible. The CR panel concludes that the methods used are consistent with the international standards. # 3.2 Scientific and technical validity of the methods used The methods used represent the scientific and technical state-of-the-art for such analyses. Some specific aspects performed in the study are highlighted below: Within the critical review a database (primary and secondary data) and model check was conducted by Chris Foster via a web meeting held on 20th October 2017. The session was conducted with full openness and transparency, and the practitioner addressed all questions and challenges with competence and completeness. The model, software and the organization of the product systems for the LCA were of a high standard and meet the requirements of ISO 14040 and ISO 14044. The modelling is carried out as described in the report, and background data is consistently applied across the systems modelled. The refinery model used for equivalency systems in the LCA has also been reviewed elsewhere, and updated on the basis of recent industry information. The discussion about allocation method applied within the refinery model - present in the report of the 2005 study - remains relevant. ISO 14040/1044 include no obligation to consider mandatory impact categories, but the choice of impact categories must be substantiated, meaningful and support the goal and scope of the study. In order to ensure continuity compared to the 2005 study the same impact categories are addressed and some methodological changes are adequately justified. The impact categories considered in the study and the characterization models chosen are still common in LCA and thus conformity to ISO 14040 and 14044 can be stated. Normalization and grouping are included as optional elements in the impact assessment. The results are normalized based on national trend tables for Germany from 2015. Based on this data, Person Equivalency Values (PEV) are calculated. The reference to the per-capita load of an inhabitant of Germany (PEV) is a relative measure. Because it is consistently considered in all systems analyzed the informative value is sufficient for the goal of the study. The grouping step applies a classification according to ecological priority, which follows the approach of Umweltbundesamt in Germany from 1999. This is quite old, however an updated classification is not available. Because the classification based on ecological priority is presented transparently the reader is free to replace it with another classification if desired. The normalisation and grouping steps result in a descriptive approach that supports easy understanding of the results. The CR panel concludes that the methods used are scientifically and technically valid. ## 3.3 Appropriateness of data in relation to the goal of the study As is normal practice for Critical Reviews, it was not possible to check the correctness of all items of primary and other data, but the data used in the study were reviewed for appropriateness and plausibility. Because different systems are included in the modelling (system under investigation, equivalency systems and reference system), data characterising the respective materials (oils and fuels) are essential to establish the admissibility of comparing the options analysed. The regenerated base fuel oils can have different qualities, according to a few parameters. To take into account these different qualities, these regenerated base oils are compared to two different qualities of virgin base oils. Today, the qualities of regenerated base oils range from approximately group I to approximately group III. It would be straightforward to mirror each regenerated base oil quality directly by the LCA data for the equivalent virgin base oil group. Unfortunately, the available databases do not contain consistent LCA data covering these groups. In particular, the most relevant groups II and III are not satisfactorily covered, while for group I and group IV (PAO) robust LCA data are available. In order to bridge this gap, the authors have developed a correlation model based on the viscosity index (VI) as a proxy indicator to define the equivalent virgin base oil by interpolation of groups I (standard base) and IV (PAO). Since no better data is currently available, this proxy indicator can be considered as relevant. The data are transparently presented and sound. Foreground data are included from the four companies involved in the study. All foreground data are characterised as twelve-month average measured data from operation in 2016. Each company has confirmed the suitability of these data for representing typical production conditions; ifeu has not visited the production sites and did not verify the data the companies have delivered to them, however plausibility checks were performed. This approach reflects common practice in LCA studies and is noted in the report. Updating the foreground data was one important reason to conduct the study. The foreground data are plausible in terms of mass balance and in relation to the data used in the 2005 study, bearing in mind that the latter were from pilot operation or process design, the former are from functioning full-scale facilities. The datasets from the four companies have wide, and very similar, scope, so that comprehensiveness can be judged to be good. Some minor points are noteworthy: VOC releases to air are not included in the foreground data. Because the impact category relating to low-level photochemical smog formation (POCP, etc.) is not included in the LCIA phase, this does not affect the overall comparison. The exclusion is plausibly justified by incompleteness and inconsistencies in the available data. Data quality for emissions to air differs between the equivalency system and the assessed regeneration system; the practitioner has assessed the significance of this and found it to be low. Results are calculated and documented separately for the four participating re-refining companies, which use technologies that differ in some details. The description of the regeneration techniques is short but sufficient. An arithmetic average of the four results is calculated and used to compare the re-refining technology with the reference technology "recovery to fuel oil". This procedure is appropriate in the context of goal and scope. The documentation of the background data used is transparent and the discussion of data quality using a semi-quantitative pedigree matrix is comprehensible. Data characterising the new reference system (regeneration to fuel) was not specifically collected for this study. It is consistent with the other data used, and although the data quality is considered slightly lower than for the four base oil regeneration processes the difference is not sufficient to affect the comparability. As noted at the start of this section, a complete review of every item of data and every calculation in the study is not included in the critical review process. Therefore the data was examined horizontally (general plausibility, plausibility of the relevance of certain impacts to the results) as well as vertically (detailed checks of parts of the calculation model – see chapter 3.2 (Data
and Model Check)) as separate but equally important checks on its robustness. The data and calculation methods were judged to be appropriate for the goal of the study, and calculated data to be robust as demonstrated by the handling of raw data. All data were available for the review panel on request. Furthermore, it can be stated that no over-interpretation of the data has been detected. The CR panel concludes that the data used are appropriate and reasonable in relation to the goal of the study. ## 3.4 Assessment of interpretation referring to limitations and goal of the study The interpretation is transparently deduced from the results and is performed appropriately with due regard to the limitations and the goal of the study. The derivation of the conclusions and recommendations is comprehensible from the interpretation undertaken. The CR panel concludes that the interpretations reflect the limitations identified and the goal of the study. # 3.5 Transparency and consistency of study report The report is clearly presented and follows the specification in ISO 14040 and 14044. The study is transparently structured. The data documentation in respective tables is supplemented by meaningful figures which enable an easy understanding of the results. Inconsistencies in the report could not be identified. The line of argument is transparent and comprehensible. The CP panel concludes that the report is transparent and consistent. ### 4 Conclusion The CR panel considers that the study has been conducted according to and in compliance with the ISO standards 14040 and 14044. ### **References:** - [1] DIN EN ISO 14040:2006: Environmental management Life cycle assessment Principles and framework - [2] DIN EN ISO 14044:2006: Environmental management Life cycle assessment Requirements and guidelines Heidekamp, 12. April 2018 Prof. Dr. Birgit Grahl (chair) **Chris Foster** Sébastien Soleille ### Addresses of the reviewers: Prof. Dr. Birgit Grahl Industrielle Ökologie Schuhwiese 6 23838 Heidekamp Germany Fon: +49(0)4533 - 4110 email: integrahl@t-online.de Sébastien Soleille Deloitte Conseil 185 avenue Charles de Gaulle 92200 Neuilly-sur-Seine France D: +33 (0)1 55 61 54 21 M: +33 (0)6 37 58 88 60 email: ssoleille@deloitte.fr Chris Foster EuGeos Limited 387 Park Lane, Macclesfield, SK11 8JR, UK Fon: +44 (0)1625 434423 M: +44 (0)7733 008544 email: chrisf@eugeos.co.uk